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ABSTRACT

Samples made by blending deuterated polystyrene Sd

of three different molecular weights with a polystyrene-

polybutadiene block copolymer SB were studied with small-

aagle scattering techniques using x-rays (SAXS) and neutrons

(SANS). The SANS results were sensitive both to the amount

of added homopolymer Sd and to its chain length. Anomalously

high SANS intensities and the absence of an intraparticle

scattering maximum are consistent with the exclusion of

added Sd from the corona of the SB micelles, resulting in

Sd enrichment of the interstitial regions.
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The study of block copolymers has proved to be a fertile area for the

detailed elucidation of polymer interactions; it has been particularly

fruitful in the production of information generated through the interplay

between theoretical studies (see, for example, papers by Meierl, Helfand2 ,

Leibler 3-5 Noolandis. , and their coworkers) and experimental work, partic-

ularly small-angle scattering studies involving x-rays (SAXS) and neutrons

(SANS).

One of the advantages of SANS over SAXS is the possibility of manipulat-

ing the contrast (in SANS, the nuclear scattering-length density) by selec-

tive deuteration. This technique was exploited in previous studiess .0 by

synthesizing a polystyrene-polybutadione diblock with the polybutadiene

segment deuterated (SB e ) to enhance the contrast between the spherical

polybutadiene microdomains and the polystyrene matrix; the SANS signal was

increased by a factor of 27, allowing detection of Debye-Scherrer powder

peaks characteristic of cubic packing of the Bd domains$ and accurate

assessment of sphere size and interfacial thickness for a number of samples

of differing molecular weight*. In another experiment", deuterated polysty-

rene-polybutadiene diblocks SB, were blended with a normal (hydrogenous)

diblock SS in such a way that the scattering-length densities of the S and B

phases were matched, eliminating (inter- and intradomain) structural scatter-

ing and thus (presumably) leaving scattering from isolated B. chains as the

dominant scattering mechanism.

The present study is a further attempt to use deuterated probe molecules

to gain information about the distribution of polymer chains in a diblock

system with spherical morphology -- this time in the polystyrene matrix.

2
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Samples were prepared by adding deuterated homopolystyrene (S.) to a solution

of polystyrone-polybutadine diblockO (SB1); the mixture was spin-cast

and annealed to give transparent solid samples approximately 1 - thick.

These samples were then studied using SAXS and SANS scattering.

Exnerimental Section

Materials

The primary material used in this study was a polystyrene-polybutadiene

diblock designated SDI; its synthesis and characterization are described in

detail in Reference 9. The number-average molecular weights of the S and B

segments are 79 and 11 kilodaltons, respectively, with narrow molecular

weight distributions on both cases. When the material is cast from a

solvent, microphase separation of the polybutadiene occurs; the B domains are

roughly spherical, with an average radius" 1 of 117 A. The SANS pattern of

the material"1 shows an interparticle interference peak at 0.0193 A"1 ,

implying an average domain center-to-center separation of 325 A.

Deuterated polystyrene (S,) was obtained from Polysciences, Warrington

PA, in three molecular weights: 68, 196, and 385 kilodaltons1 s (Z L 654, 1885

and 3702). Gel-permeation chromatographic runs carried out in our laborato-

ries gave polydispersity indices (K./%) of 1.07, 1.12, and 1.17, respec-

tively, for these materials, which we shall henceforth refer to as Sdl, S42,

and Sd3.

Blends of SD1 with the S polymers were prepared by dissolving them in

toluene, then forming thin films (-0.1 me) by a solvent spin-casting tech-

nique"s (the films wore stacked and annealed to provide specimens of suitable
a

thickness)- Six samples were cast: a "dilute" series in which Sd of each

molecular weight was added to SBI so that 11 per cent of the polystyrene

3
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content was homopolymer, and a "concentrated" series in which the Sd fraction

vas 26 per cent.

Structural Analvsis

Electron micrographs were obtained on a Phillips 200 electron microscope

operated at 80 kV and calibrated against a diffraction grating carbon replica

(21,600 lines/cm). Samples were stained with osmium tetroxide1" and cut into

sections (-400 A thick) on an LKB ultramicrotome fitted with a freshly

prepared glass knife.

Small-angle x-ray scattering (SAXS) experiments were carried out at the

Rosenstiel Research Center at Brandeis University, through the courtesy of

Dr. Walter C. Phillips, using an instrument developed there1 s . Photons were

supplied by an Elliott rotating-anode generator operating at 35 keV with a Cu

target. The bean was focused and monochromated (A - 1.54 A) by a double-

mirror camera with Ni-coated mirrors. Beam size at the sample was -0.3 x 0.4

me. Detection of scattered x-rays was carried out by an image intensifier

placed (for this experiment) 368 mm from the sample. Samples were run for 30

min each. The isotropic two-dimensional scattering patterns were then

examined, corrected for detector sensitivity, and subjected to a radial

average routine.

Small-angle neutron scattering (SANS) experiments were performed on the

30-m instrument at the National Center for Small-Angle Scattering Research

(NCSASR), Oak Ridge National Laboratory, employing neutrons of wavelength A -

4.75 A and sample-to-detector distances of 6 and 14 m. Scattering data

(collected in runs of 30 min each) were corrected for background scattering

and detector sensitivity, then radially averaged. Scattering intensities

4



were reduced to absolute values by comparison with a specimen of irradiated

aluminum of known R. run under the same conditions.

Electron Microscopy

Figure 1 shows representative micrographs of the 11% and 26% blends of

Sd 3 with SB1, designated SBl(Sd 3 )0.1l and SB1(Sd3) 0 . 26  (compare with

micrographs of unblended SB1 and SBdl, Figs. 1 and 2 of Ref. 9). The

micrographs confirm that the morphology is spherical in all cases. The 11%

blend is almost as well ordered as the pure SB1, but the 26% blend looks

significantly different -- the B domains are farther apart, and they seem to

line up in strings, rather than retaining the isotropic packing pattern of

the other two.

SAXS Analysis

Figure 2 shows the SAXS results for the 11% and 26% blends of S.1 with

SBI (results for the S.2 and Sd3 blends were virtually identical). The

dominant features are the interparticle interference peaks around Q - 0.02

A 1 . In the 261 blends, this peak is shifted to lower Q, reflecting the

greater separation between B domains as the amount of added homopolymer is

increased. Quantitatively, the peak occurs at Q - 0.0200 A-1 for the 11%

blends (implying a correlation length d - 2w/Q - 313 A) and at 0.0180 A-1 for

the 26% blends (d - 350 A).

Also apparent in the "SAXS data (Fig. 2) is a broad peak around 0.05

A-. We attribute this to the first maximum of the single-particle form

5
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factor1 6 for the polybutadiene spheres, and we can thus calculate the

average radius of these spheres as R. - 5.765/0.05 - 115 A, in close

agreement with a previous estimate 11 (117 A) for R in SB1.

In summary, the SAXS data are sensitive to the amount of homopolystyrene

added (indicated by the position of the interparticle interference maximum),

but are insensitive to its molecular weight.

SANS Analysis

Fig. 3abc shows the neutron-scattering patterns obtained from the 11%

blends and Fig. 3def those from the 26% blends. The most prominent feature

in these spectra is again the interparticle interference peak, located (in

agreement with the SAXS data) at 0.0200 A-1 for the 11% blends and at

0.0180 A-1 for the more concentrated samples. This time, however, there are

marked changes with the molecular weight of the added homopolymer Sd: the

intensity at minimum Q rises as MH(Sd) increases, and it rises faster for the

26% samples than it does for the more dilute series.

In an attempt to obtain a more quantitative understanding of the

scattering in these samples, we have developed a preliminary modeling scheme

for the coherent scattering which incorporates three mechanisms: (1)

scattering from single chains of labeled polystyrene Sd, (2) interparticle

interference, and (3) intraparticle scattering from the B domains. As in our

studies of SB/SBd blends10 , the single-chain scattering was modeled with a

Debye function.

2() [ IQ2 - 1+ exp(-R2Q2 ) ] (1)

6



where Q is the magnitude of the momentum-transfer vector (equal to 4.w-1

sinO, where A is the wavelength of the incident radiation and 0 is half the

scattering angle) and R2 is the mean-square radius of gyration of the chain.

In modeling the effects of interparticle interference, we have used the

treatment described by Kinning and Thomas17 , which utilizes the closed-form

solution for the Percus-Yevick" correlation function developed by Wertheim"9

and Thiele 20 . This solution is based on the assumption of hard-sphere

behavior for the interacting particles. The calculation is parameterized

mainly in terms of the hard-sphere volume fraction q

4 n (2)

where R.b is the effective radius of the hard spheres and n is the number of

spheres per cm3 . Auxiliary variables a, P, and 7 are defined in terms of .:

a - (1 + 2q) 2 /(l - q)l (3)

- -6q(l + q/S)2/(l - 3)
4  

(4)

7 - hq(l + 2q)2/(1 - 3)4 (5)

Following Kinning and Thomas17 , we then write the interference factor

,'

S(QR,') - 1 + 24(G(A.,') (6)

where A - 2QPd. and

7
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G(A) - A"(sin A - A cos A) +

A2"B(2A sin A + (2 - A2 ) cos A -2) + i

(-A 4 cos A + 193A2 - 6) cos A + (A3  6A) sin A + 6]) (7)
A

Intraparticle scattering was handled as before9'1 6 , using the Bessel

function J3/2 to describe the form factor

fsphr*Qp 91 312 (QRb) I2
)  2 2 [(QP3,).] (8)

where Rb is taken as 117 A, the radius of the B domains. Total scattering

was then represented as

I(Q, Rb,, Rb ) - Ich.i.(Q, I. , Rz) + KS(Q, Rh.) f2ph.Z.(QRb) + Iinc (9)

Here 'obein is the scattering from labeled polystyrene chains Sd, calculated

from the Debye expression, Eq. 1. The factor K includes the contrast factor

(PP- p.)2 , where p and p. are the neutron scattering-length densities of

the particle and matrix, and I.. is the incoherent scattering, which for

these samples was constant at 0.85 cm"1 .

Given the molecular weight and isotopic composition of the labeled

homopolymer chains, it is possible to calculate expected values for the

forward scattering I.:

8
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-o(a. - a ) 2 ZNo X( - X) (10)

Here a. is the sum of coherent scattering lengths21 for the normal repeat

unit, a. the corresponding sum for the deuterated repeat unit, Z the polymer-

ization index, N. the number of repeat units per cm3 in the bulk, 0 the

volume fraction of polystyrene in the sample, and X the fraction of polysty-

rene which is labeled. Expected radii of gyration R. are easily calculated
2 2

from the expression

Ra - (K/4) 1 31(11)

The quantity (K/t)1/3 for bulk polystyrene has been determined23 to be

0.27. Expected values of 10 and R. for the samples used in this study are

listed in Table 1.

Fig. 3abc shows the SANS data for the 11% samples together with the

results of the calculations described above. The hard-sphere diameter Rb,,

the volume fraction tI, and the contrast factor K were varied to secure

agreement between calculation and experiment for the position and intensity

of the interparticle interference peak at Q - 0.02 A-', and the Debye

parameters I. and R5 were varied to fit the points at lowest Q and the

general falloff of intensity as Q increases. Q values used in the

calculations were those for which experimental points were available, and

calculated spectra were run through several iterations of a Pascal 7-point

smooth (in which adjacent points are averaged using the normalized

9



coefficients of a sixth-power binomial expansion) to simulate instrumental

broadening.

Inspection of Fig. 3 shows that in general, the algorithms used do a

remarkably good job of accounting for the experiment. Two discrepancies,

however, are immediately apparent. The first is that the observed inter-

particle interference peak is broader about the base than the calculated

peak. We take this to imply that there are ways in which the arrangement of

B domains in the matrix does not correspond to a hard-sphere distribution,

and it may be that the existence of "strings" of spheres, as seen in Fig. 1,

is responsible for this discrepancy. The second discrepancy is the complete

absence in the observed spectra of the broad peak around 0.05 A"1 due to

intraparticle scattering from the polybutadiene spheres, present in the

calculated spectra and clearly seen in the SAXS data (Fig. 2). We will

discuss this discrepancy in more detail later.

Discussion

Clustering of S chains

Values of I. and R. required to fit the observed spectra for the 11%

samples (Table 1) are reasonably close to the expected values, but for the

26% samples, highly inflated values of these parameters are required (Fig. 4,

Table 1). We attribute this (as in our earlier study10 ) to clustering of

the deuterated chains, which of course would be more pronounced in the

samples more concentrated in Sd. Note that for the 26% samples, the ratio

(obs/calc) for R. is close to the square root of the ratio for 10, in accord

with Equations 10 and 11.

10

I I

. W , ' " ,



Intraparticle Scattering

In SANS experiments, the intensity of the intraparticle scattering

depends on the square of the difference between the scattering length

densities of the contrasting regions. Using scattering lengths2' for carbon

and hydrogen of 0.665 x 10-12 and -0.374 x 10"2
2 cm and densities of 1.05g/cm

3

for polystyrene and 0.89 g/cm 3 for polybutadiene, we calculate scattering-

length densities p(S) - 1.414 and p(B) - 0.412 (units are l01°cm-2 ), the

difference being due to the higher C/H ratio and greater density of poly-

styrene. In deuterated polystyrene (Sd), the substitution of deuterium

(scattering length - 0.667 x 10"1 2cm) for hydrogen raises P(Sd) to 6.47.

Thus, when Sd homopolymer is blended with diblock SB the scattering-length

density of the polystyrene matrix is increased. This is shown graphically for

a typical micelle of SBl in Fig. 4a, where scattering-length density is

plotted against position with respect to the B domain (for simplicity,

interfaces are represented as being sharp). In in a homogeneous polysty-

rene blend which is 11% Sd , p is raised to 1.97; if the Sd content is

increased to 26%, p becomes 2.73 (dashed lines, Fig. 4b and 4c). However, if

we assume that the added Sd is excluded from the corona, the interstitial

regions are necessarily enriched in Sd . If we take the size of the corona to

be the same as the hard-sphere radius determined from the Percus-Yerick

model, we can calculate that for the 11% samples (R, - 117, R*h - 200 A), the

volume fraction of Sd in the interstices is 0.337, and the corresponding p is

3.12 (Fig. 5b). For the 26% samples (R. - 117, Rh. - 215 A), the

interstitial fraction of Sd is 0.705-- the interstices are now mostly

deuterated -- and p - 4.98 (Fig. 5c). Using the known value of p (B) given

11



above the values of K (Eq. 9) required to fit the interparticle interference

peak in each of the spectra can be used to deduce an apparent value of ps.

These derived values vary from 2.6 to 3.4 for the lit Si samples, and from

5.3 to 5.6 for the 26% samples (see Fig. 3). The striking fact is that these

fobserved' values far exceed the values of ps calculated for a homogeneous

dispersion of Sd in the S matrix, and are much more nearly In accord with the

values of ps derived from the assumption that homopolyme Si is restricted to

interstitial regions between the SB1 micelles (B core and S corona). An

interesting additional trend is the slight reduction in ps as H.(Sd) is

increased, perhaps due to a ufuzzinug of the boundary between coronas and

interstices with increasing chain length.

We now return to the question of the missing intraparticle peaks. They

were expected to appear because we Implicitly assumed that the Sd chains were

distributed more or less evenly through the polystyrene matrix. Their

absence forces us to take seriously the idea of the whard spheresm used in

the calculations described above. As has been pointed out before (see, for

example. Refs. 4, 7 and 17), the B domains In an SB diblock are surrounded by

a corona of the S segments attached to the phase-separated B segments; this

corona separates the 3 domains and determines the effective hard-sphere

radius used In the calculations.

12
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Figure 4 demonstrates why the intraparticle scattering maximum appears

in the SAXS spectra (where the B spheres are the only source of contrast, as

in Fig. 4a) and does not appear in the SANS data, where the S-B contrast is

overshadowed by the contrast between (labeled) interstitial and coronal

regions which is not abrupt, as pictured in Fig. 4. This preliminary

analysis assumes total exclusion of the homopolymer from the corona; a

gradual depletion of homopolymer chains from regions spatially closer to the

B domains is physically more reasonable. Thus, it is probable that the

concept of a sigioidal smoothing function2 4 can be applied in characterizing

the coronal-interstitial interface, and we intend to attempt such a charac-

terization in a future study.

Addition of polystyrene homopolymer to a diblock consisting of poly-

butadiene spheres in a polystyrene matrix increases the average separation of

the B spheres in a way which may be locally anisotropic, especially with

homopolymer of longer chain length. The added homopolymer is not uniformly

dispersed through the matrix, but is excluded from the S corona surrounding

the B spheres and is thus forced into the interstitial regions between the

micelles (B sphere plus S corona).
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Table 1.

I 0 (CM 1 ) Ra (A)

ratio ratioS lecalculated obser-ved ob .cl calculated observed oscl

SBl(Sl)o.1 1  22.9 35 1.53 70.4 87 1.24

SBl(Sd2) 0.1 1  66.0 105 1.59 119.5 130 1.09

SBl(Sd3) 0.1 1  129.6 120 0.93 167.5 190 1.13

SBl(Sdl)o.6 47.4 97 2.0 70.4 100 1.42

SBl(Sd2) 0.26  136.6 600 4.4 119.5 250 2.09

SBl(Sd3) 0.26  268.2 10,000 37.0 167.5 960 5.73
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FIGURE CAPTIONS

Fig. 1. Electron micrographs of polystyrene-polybutadien diblocks. (a)

Ul blended with 11% deuterated polystyrene homopolymer. (b) S51

blended with 26% deuterated polystyrene homopolymer. Samples have

been stained with OsO , which preferentially darkens the

polybutadiene.

Fig. 2. SAXS data for Sbl(Sdl), , (full curve, typical of 11% samples) and

SIl(Sl)0 26 (dashed curve, typical of 26% samples).

(AKb,( )
Fig. 3. SANS data for samples containing 11% S. in S31; (de,f) SANS data

for samples containing 261 S. in S5. Circles represent

experimental points, full lines are calculated from Eq. 9 using

parameters given in the figure. Molecular weight of added

homopolymer S. (in Kilodaltons) is given as a left superscript.

Fig. 4. (a) SANS scattering-length density # for SBl in the neighborhood of

a 5 sphere. Dashed lines show increase in contrast for 11% and 26t

added Sd homopolymer if the S d is distributed uniformly through the

matrix. (b) Scattering-length density for 11% added Sd . (c)

Scattering-length density for 26% added Sd. In (b) and (c). hatched

area shows p profile if homopolymer is excluded from the corona;

dashed lines show p profile if homopolymer is uniformly distributed

throughout the matrix.
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